
1

The War Crime of Audio Torture: Applying
Creative Digital Signal Processing

Visualization for Detection and Analysis

Robert Viragh

July 23, 2023

Dedication

To the countless, nameless victims of audio torture around the globe - may
this work compel immediate action to end such inhumanity.

Abstract

This image presented herein fulfills the requirements for the degree of Doctor
of Philosophy in Digital Signal Processing and Human Rights.

Collections

An instance of illegal audio torture was recorded, with a baseline for com-
parison.

Unique Contribution and Findings

The visualization presented herein represents the detection of audio torture.
This unique methodology brings together the fields of digital signal process-
ing and human rights, revealing the insidious nature of audio torture. The
effects mimic those of Havana Syndrome: tinnitus, loss of balance, cognitive

2

difficulties, and more. These physiological responses align with the mecha-
nisms invoked by intense exposure to loud noises.

Figure 1: Comparison of a safe audio source (left) and one containing audio
torture (right).

The physiological effects seen herein, ranging from auditory damage to
disorientation, are considered illegal war crimes under the Geneva Conven-
tion.

References

1. International Committee of the Red Cross (ICRC). (1949). Geneva Con-
vention Relative to the Treatment of Prisoners of War. Geneva, Switzerland:
ICRC.

Appendix: Source Code

import numpy as np

import matplotlib.pyplot as plt

from scipy.io import wavfile

from scipy.fft import fft

from mpl_toolkits.mplot3d import Axes3D

3

Read the wav file

sample_rate, data = wavfile.read(’outputsafe.wav’) // For second visualization, rerun with dangerous version.

If the data is stereo, just take one channel (the first one)

if data.ndim > 1:

data = data[:, 0]

Define the slice size (100 ms slices)

slice_size = sample_rate // 10

Calculate the number of slices

num_slices = len(data) // slice_size

Prepare a 3D figure

fig = plt.figure(figsize=(10, 5))

ax = fig.add_subplot(111, projection=’3d’)

Calculate FFT for each slice

for i in range(num_slices):

slice_data = data[i*slice_size:(i+1)*slice_size]

Let’s take the FFT

fft_out = fft(slice_data)

Calculate the absolute value and normalize

magnitude = np.abs(fft_out) / len(fft_out)

Calculate frequency for each FFT point

freq = np.fft.fftfreq(len(fft_out), 1.0/sample_rate)

Ignore half of the points (they are mirrored around 0)

mask = freq > 0

Bin very high frequencies together. These are particularly dangerous frequencies.

max_freq = 10000

high_freq_mask = freq[mask] > max_freq

magnitude[mask][high_freq_mask] = np.sum(magnitude[mask][high_freq_mask])

4

Add this line to the 3D plot, at position i (which is the time)

ax.plot([i]*len(freq[mask]), freq[mask], magnitude[mask])

Set the labels

ax.set_xlabel(’Time [0.1 s]’)

ax.set_ylabel(’Frequency [Hz]’)

ax.set_zlabel(’Magnitude’)

ax.set_title(’Frequency spectrum of the [SAFE/DANGEROUS] audio over time’)

Show the plot

plt.show()

5

